Sponsored Links
-->

Senin, 18 Juni 2018

Rayleigh-Jeans Law - YouTube
src: i.ytimg.com

Dalam fisika, Rayleigh-Jeans Law adalah perkiraan sinar spektral radiasi elektromagnetik sebagai fungsi panjang gelombang dari benda hitam pada suhu tertentu melalui argumen klasik. Untuk panjang gelombang                        ?                  {\ displaystyle \ lambda}    , itu adalah:

                           B                        ?                              (          T         )          =                                                 2                c                                 k                                                          B                                                                   T                                         ?                                 4                                                         ,                  {\ displaystyle B _ {\ lambda} (T) = {\ frac {2ck _ {\ mathrm {B}} T} {\ lambda ^ {4}}},}   

di mana                               B                       ?                              {\ displaystyle B _ {lambda}}  adalah pancaran spectral; daya yang dipancarkan per unit memancarkan area, by steradian, by satuan panjang gelombang,                    c             {\ displaystyle c}   adalah kecepatan cahaya,                            k                                   B                                         {\ displaystyle k {{mathrm {B}}}  adalah constant Boltzmann dan                      T             {\ displaystyle T}   adalah suhu dalam kelvin. Untuk frekuensi                    ?             {\ displaystyle \ nu}   , ungkapannya adalah sebaliknya

                              B                       ?                         (          T        )        =                                            2                            ?                                  2                                                          k                                                   B                                                               T                                     c                              2                                                  .             {\ displaystyle B _ {\ nu} (T) = {\ frac {2 \ nu2 k {{mathrm {B}} T } {c2}}.}  Â

Rayleigh-Jeans law agrees with experimental results on large wavelength (low frequency) but strongly disagrees on short wavelength (high frequency). This inconsistency between observation and the prediction of classical physics is commonly known as ultraviolet disaster. The resolution in 1900 with a derivative by Max Planck of Planck's law, which provided precise radiation at all frequencies, was a fundamental aspect of the development of quantum mechanics in the early 20th century.


Video Rayleigh-Jeans law



Historical development

In 1900, the British physicist Lord Rayleigh acquired ? -4 Rayleigh-Jeans' legal dependence based on classical physical arguments and empirical facts. Complete derivations, including the proportionality constant, were presented by Rayleigh and Sir James Jeans in 1905. Rayleigh-Jeans' law reveals an important error in current theoretical physics. The law predicts the output of energy deviating toward infinity as wavelengths approaching zero (as frequencies tend to be infinite). Spectral emission measurements from actual black bodies reveal that emissions agree with Rayleigh-Jeans laws at low frequencies but deviate at high frequencies; reach the maximum and then fall with the frequency, so the total emitted energy is limited.

Maps Rayleigh-Jeans law



Comparison with Planck's law

Pada tahun 1900 Max Planck secara empiris memperoleh emiti untuk radiasi benda hitam yang dinyatakan dalam panjang gelombang = c /? (Hukum Planck):

                              B                       ?                         (          T        )        =                                            2               h                            c                                  2                                                                 ?                              5                                                   Ã,                              1                                        e                                                                             h                      c                                                              ?                                             k                                                                            B                                                                                              T                                                                                 -              1                                     ,             {\ displaystyle B _ {\ lambda} (T) = {\ frac {2hc2}} {\ lambda5}} { \ frac {1} {e ^ {\ frac {hc} {\ lambda k _ {\ mathrm {B}} T}} - 1}},}  Â

di mana h adalah konstanta Planck dan k B konstanta Boltzmann. Hukum Planck tidak menderita bencana ultraviolet, dan setuju dengan baik dengan data eksperimen, tetapi signifikansi penuh (yang pada akhirnya mengarah pada teori kuantum) hanya dihargai beberapa tahun kemudian. Sejak,

                                   e                         x                              =          1                   x                                                          x                                 2                                                         2               !                                                                                           x                                 3                                                         3               !                                                   ?         .                  {\ displaystyle e ^ {x} = 1 x {x ^ {2} \ over 2!} {x ^ {3} \ over 3!} \ cdots.}   

Kemudian di batas suhu tinggi atau panjang gelombang panjang, istilah dalam exponensial menjadi kecil, dan exponensial juga didekati dengan istilah orde pertama Taylor polinomial,

                           e                                                    h                c                                            ?                                 k                                                          B                                                                      T                                                   ?        1                                                  h               c                                      ?                             k                                                   B                                                               T                                     .             {\ displaystyle e ^ {\ frac {hc} {\ lambda k {{mathrm {B}} T}} \ kira-kira 1 {\ frac {hc} {\ lambda k_ {mathrm {B}} T}}.}  Â

Begit,

                                         1                                        e                                                                             h                      c                                                              ?                                             k                                                                            B                                                                                              T                                                                                 -              1                                      ?                              1                                          h                c                                            ?                                 k                                                          B                                                                      T                                                   =                                            ?                             k                                                   B                                                               T                                       h               c                                     .             {\ displaystyle {\ frac {1} {e ^ {\ frac {hc} {\ lambda k _ {\ mathrm {B}} T}} - 1}} \ kira-kira {\ frac {1} {\ frac {hc} {\ lambda k {{mathrm {B}} T}}} = {\ frac {\ lambda k {\ mathrm {B} } T} {hc}}.}  Â

Ini menghasilkan formula blackbody Planck yang berkurang menjadi

                        B                       ?                         (          T        )        =                                            2               c                             k                                                   B                                                               T                                    ?                               4                                                  ,         {\ displaystyle B _ {\ lambda} (T) = {\ frac {2ck {{mathrm {B}} T} {\ lambda {4 }}},}  Â

which is identical to the classically derived Rayleigh-Jeans expression.

This last expression is Rayleigh-Jeans law at small frequency limits.

Lecture 26. Blackbody Radiation (Ch. 7) - ppt download
src: slideplayer.com


Consistency of frequency and expression depending on wavelength

Ketika membrandingkan emiti tergantung frekuensi dan panjang gelombang dari hukum Rayleigh-Jeans penting untuk mengingat itu

                                                       d              P                                      d                              ?                                                   =                   B                       ?                         (          T        )             {\ displaystyle {\ frac {dP} {d {\ lambda}}} = B _ {\ lambda} (T)}  , dan
                                                       d              P                                      d                              ?                                                   =                   B                       ?                         (          T        )             {\ displaystyle {\ frac {dP} {d {\ nu}}} = B _ {\ nu} (T)}  Â

Karena itu,

                              B                       ?                         (          T        )         ?                   B                       ?                         (          T        )             {\ displaystyle B _ {\ lambda} (T) \ neq B _ {nu} (T)}  Â

bahkan setelah mengganti nilai                    ?        =        c                  /                ?             {\ displaystyle \ lambda = c/\ nu}  , karena                               B                       ?                         (          T        )             {\ displaystyle B _ {lambda} (T)}   memiliki unit energi yang dipancarkan per satuan waktu per satuan luas permukaan pemancar, per satuan sudut solid, per satuan panjang gelombang , sedangkan                               B                       ?                         (          T        )             {\ displaystyle B _ {nu} (T)}   memiliki unit energi yang dipancarkan per satuan waktu per satuan luas permukaan pemancar, per satuan sudut padat, per frekuensi satuan . Agar consists, kita harus menggunakan kesetaraan

                              B                       ?                                 d        ?        =        d        P        =                   B                       ?                                 d        ?            {\ displaystyle B _ {\ lambda} \, d \ lambda = dP = B _ {\ nu} \, d \ nu}  Â

where both parties now have a power unit (energy emitted per unit time) per unit of emitting surface area, per unit of solid angle.

Dimulai dengan hukum Rayleigh-Jeans dalam hal panjang gelombang yang kita dapatkan

                              B                       ?                         (          T        )        =                   B                       ?                         (          T        )         ÃÆ' -                                            d              ?                                      d              ?                                          {\ displaystyle B _ {\ lambda} (T) = B _ {\ nu} (T) \ kali {\ frac {d \ nu} {d \ lambda}}}  Â

dimana

                                                       d              ?                                      d              ?                                     =                             d                          d              ?                                               (                                     c              ?                                )                =        -                              c                        ?                              2                                                       {\ displaystyle {\ frac {d \ nu} {d \ lambda}} = {\ frac {d} {d \ lambda}} \ kiri ({ \ frac {c} {\ lambda}} \ right) = - {\ frac {c} {\ lambda2}}}   .

Ini menuntun kita untuk menemukan:

                              B                       ?                         (          T        )        =                                            2                             k                                                   B                                                               T                                              (                                                            c                      ?                                                        )                                                  2                                                                  c                              2                                                   ÃÆ' -                              c                        ?                              2                                                  =                                            2               c                             k                                                   B                                                               T                                    ?                               4                                                       {\ displaystyle B _ {lambda} (T) = {\ frac {2k {{mathrm {B}} T \ left ({\ frac { c} {\ lambda}} \ right) 2}} {c2}} \ times {\ frac {c} {\ lambda2}} = {\ frac {2ck _ {\ mathrm {B}} T} {\ lambda4}}}   .

Lecture 26. Blackbody Radiation (Ch. 7) - ppt download
src: slideplayer.com


Bentuk lain dari hukum Rayleigh-Jeans

Tergantung pada aplikasinya, fungsi Planck dapat diekspresikan dalam 3 bentuk berbeda. Yang pertama melibatkan energi yang dipancarkan per satuan waktu per satuan luas permukaan pemancar, per satuan sudut padat, per unit spektral. Dalam bentuk ini, fungsi Planck dan terkait batas Rayleigh-Jeans diberikan oleh

                                   B                        ?                              (          T         )          =                                                 2                h                                 c                                     2                                                                         ?                                 5                                                          Â                                  1                                              e                                                                                 h                        c                                                                 ?                                                 k                                                                                  B                                                                                                   T                                                                                        -                1                                          ?                                                 2                c                                 k                                                          B                                                                   T                                         ?                                 4                                                                  {\ displaystyle B _ {\ lambda} (T) = {\ frac {2hc ^ {2}} {\ lambda ^ {5}}} ~ {\ frac {1} {e ^ {\ frac {hc} {\ lambda k _ {\ mathrm {B}} T}} - 1}} \ kira {\ frac {2ck _ {\ mathrm {B}} T} {\ lambda ^ {4} }}}   

atau

                              B                       ?                         (          T        )        =                                            2               h                            ?                                  3                                                                  c                              2                                                                        1                                        e                                                                             h                      ?                                                                                     k                                                                            B                                                                                              T                                                                                 -              1                                      ?                                            2                             k                                                   B                                                               T                            ?                                  2                                                                  c                              2                                                       {\ displaystyle B _ {\ nu} (T) = {\ frac {2h \ nu3}} {c2}} { \ frac {1} {e ^ {\ frac {h \ nu} {k _ {\ mathrm {B}} T}} - 1}} \ kira {\ frac {2k {{mathrm {B}} T \ nu2} {c2}}}  Â

Sebagai alternatif, hookum Planck dapat ditulis sebagai express                   Saya        (        ?        ,          T        )        =        ?                   B                       ?                         (          T        )             {\ displaystyle I (\ nu, T) = \ pi B_ {\ nu} (T)}   untuk daya yang dipancarkan terintegrasi di atas semua sudut yang solid. Dalam bentuk ini, fungsi Planck dan terkait batas Rayleigh-Jeans diberikan oleh

                  Saya        (        ?        ,          T        )        =                                            2              ?               h                            c                                  2                                                                 ?                              5                                                   Ã,                              1                               Ã

Source of the article : Wikipedia

Comments
0 Comments